1.2 C
New York
Wednesday, December 10, 2025

Buy now

spot_img

James Webb captures a stunning image of two galaxies merging

The James Webb Space Telescope has captured a gorgeous image of a dramatic cosmic event: two galaxies colliding. The two spiral galaxies are in the process of merging, and are glowing brightly in the infrared wavelength in which James Webb operates, shining with the light of more than a trillion suns. It is not uncommon for two (or more) galaxies to collide and merge, but the two pictured in this image are giving off particularly bright infrared light. The pair has a combined name, Arp 220, as they appear as a single object when viewed from Earth. Known as an ultraluminous infrared galaxy (ULIRG), Arp 220 glows far more brightly than a typical spiral galaxy like our Milky Way. Arp 220 is located 250 million light-years away, but its bright glow means that Webb was able to capture the object using its Near-Infrared Camera (NIRCam) and Mid-Infrared Instrument (MIRI). By combing data from these two instruments, scientists are able to see the object in both the near-infrared and mid-infrared wavelengths. While the process of galaxies colliding can be destructive, it can also create many new stars — as it has in this case. “The collision of the two spiral galaxies began about 700 million years ago,” Webb scientists write. “It sparked an enormous burst of star formation. About 200 huge star clusters reside in a packed, dusty region about 5,000 light-years across (about 5 percent of the Milky Way’s diameter). The amount of gas in this tiny region is equal to all of the gas in the entire Milky Way galaxy.” Arp 220 was previously imaged by the Hubble Space Telescope in 2008. Comparing the two images shows not only the differences when observing in different wavelengths, as Hubble looks in the visible light portion of the spectrum compared to Webb’s infrared, but it also shows how much more detail is visible thanks to advances in technology over the last 15 years. Another difference is in the distinctive diffraction spikes that are a signature of a James Webb image: the six-pointed star shape is caused by the telescope’s hexagonal primary mirror. A striking new image from the James Webb Space Telescope shows a rare object called an Einstein ring. This shows what appears to be a ring-shaped object in the sky, but is actually created by two separate galaxies and the epic forces of gravity. There’s a useful astronomical phenomenon called gravitational lensing, in which a large object like a galaxy or a cluster of galaxies has so much mass that it actually bends spacetime. If a massive object sits in front of a more distant object, as seen from Earth, the massive object can act like a magnifying glass, letting us see the very distant object in more detail than would normally be possible. This is a relatively common finding in astronomical images, and is one way that scientists are able to study extremely distant galaxies. The James Webb Space Telescope has captured another stunning image of space, this time showing the dramatic scenes around a baby star. Very young stars can throw off powerful jets of hot gas as they form, and when these jets collide with nearby dust and gas they form striking structures called Herbig-Haro objects. This new image shows Herbig-Haro 49/50, located nearby to Earth at just 630 light-years away in the constellation Chamaeleon. Scientists have observed this object before, using the Spitzer Space Telescope, and they named the object the “Cosmic Tornado” because of its cone-like shape. To show the impressive powers of James Webb to capture objects like this one in exquisite detail, you can compare the Spitzer image from 2006 and the new James Webb image. The James Webb Space Telescope is NASA’s most precise and technically proficient equipment for observing the wonders of the universe. Astronomers rely on it to unravel the deepest secrets by peaking at distant solar systems and capturing planets like those in ours. Much recently, the Webb Telescope was able to capture its first direct image of exoplanets nearly 130 light-years away from the Earth. The observatory seized images of four “giant” planets in the solar system of a distant star called HR 8799. This is a fairly young system formed roughly 30 million years ago, a timeline that dwarfs in comparison to our solar system’s 4.6 billion years of age.

Related Articles

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Stay Connected

0FansLike
0FollowersFollow
0SubscribersSubscribe
- Advertisement -spot_img

Latest Articles